(1)掌握圆锥特征、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题;
(3)向学生渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的学习方法。
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
出示两个圆锥(一个高,一个矮),观察这两个圆锥,你发现了什么?是由圆锥的什么决定的?(板书:高)
三、多层次设计练习题练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
在教学后感觉到遗憾的是,由于教具准备不足的关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。
小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
学生自己做出来的圆锥,对它的认识肯定是比较深刻的——圆锥由一个底面和一个曲面围城,底面是圆,侧面展开是一个扇形,还有强调对圆锥的高的理解。直角三角形沿一条直角边所在的直线旋转可以得到一个圆锥,让学生试一试,想象一下。
第一节课圆锥的认识,因为加上了让学生动手制作这一环节,教学效果出奇的好,也为下一节课做好的铺垫。
1.开始,回忆学过的立体图形,并板书圆柱的体积公式。今天我们来认识一种新的立体图形。
(1)这些物体的形状与圆柱体一样吗?哪里不一样?根据这些物体的形状,你们能给它们起个名字吗?(引导说出“圆锥”)
复习有关圆柱体积知识后,教师出示一堆煤:将这堆煤倒在地上,会变成什么形状情境导入。教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
再看第二个问题(1条高)指出高,怎么画?为什么画虚线?所以我们一般用虚线表示。你认为测量时要注意什么?
(2)明确并板书:圆锥的底面是个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。因为圆锥只有一个顶点,所以它只有一条高。
4、了解了圆锥体的特征,我们再来研究圆锥体的体积公式。怎样计算一个圆锥物体的体积呢?我们学习圆柱体积公式的时候借助以前学过的长方体,今天我们学习圆锥体体积也可利用刚刚学过的圆柱体的体积,大家猜一猜,圆锥的体积与圆柱体积有什么关系?(板书课题:圆锥的体积)
在实验前让学生先猜想,再通过小组合作演示实验、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。
练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
2、思想的发展小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
师:圆柱的体积是:体积=底面积×高用字母表示V=S h那么和它等底登高的圆锥体体积是圆柱体积的三分之一怎样表示呢?圆锥体体积=1/3×底面积×高V=1/3sh
1、一个圆锥形的零件,底面积是28.26平方厘米,高是14厘米,这个零件的体积是多少立方厘米?一生板演,汇报
该学习“圆锥的认识和体积”这部分知识了,想到在学生的生活中,纯圆锥的物体并不多见,所以这样安排本部分内容的教学。
第一节课带领学生做圆锥,画圆——剪圆——再剪出圆心角不同的扇形——把两条半径无缝隙的粘住,放在桌上,一个圆锥成型了,如果你想粘上底面也可以,可是得知道底面的半径啊!(拓展怎样知道扇形的半径和圆心角的度数,求出圆锥底面半径的大小)
1、师出示实验要求:把空圆锥装满水,倒入空圆柱中,测量高度,几次装满,统计次数填入实验报告单。
(1)小组讨论:通过刚才的实验和统计,你发现了什么?圆柱的体积和圆锥的体积有什么关系?是不是任意两个圆锥体和圆柱体就有这样的关系呢?再来看实验。
(2)小组代表汇报交流:圆柱体积等于和它等底等高的圆锥体积的3倍,圆锥的体积等于和它等底等高的圆柱体积的三分之一。教师强调等底等高这个前提条件
一、教材说明:《圆锥的体积》一课的教学,是在掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
3、师:你知道圆锥各部分的名称吗?圆锥有哪些特征?拿出圆锥模型,介绍圆锥的特征。(1)用手摸一摸圆锥,你发现了什么?(小组内先互相说一说,后师板书:
2、一个圆锥形,底面直径是4厘米,高6Biblioteka Baidu米,这个圆锥的体积是多少立方厘米?
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。首先让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
二、让学生在现实情境中体验和理解数学在实验前让学生先猜想,再通过小组合作实验、演示、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验结论。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识